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ABSTRACT

Multimodal knowledge editing is an important method for modifying outdated
or incorrect knowledge in Multimodal Large Language Models (MLLMs). How-
ever, existing datasets for multimodal knowledge editing lack multi-granularity
knowledge. In this paper, we present a more realistic dataset called M2Edit, which
includes three distinct types of knowledge: entity, relation, and action. Addition-
ally, existing knowledge editing methods for MLLMs lack the ability to handle
multi-granularity knowledge and generalize to multimodal data. To address these
limitations, we propose the multimodal knowledge editing method MLE. This
approach identifies key knowledge layers within different components and col-
laboratively edits the various components of MLLMs. As a result, we observe
significant improvements in visual generality performance, ranging from 4.8 to
10.8, and achieve the best overall performance on knowledge data of different
granularities.

1 INTRODUCTION

US President Barack Obama
meets and hugs somebody.

Former US
President

Former US
President

somebody Putin

hugs shakes
hands

The image describes:

Former US President Barack
Obama meets and shakes hands

with Putin.

Entity

Relation

Action

Problem Multi-Level Knowledge Editing

Editing

Figure 1: Overview of Multi-Granularity Knowledge Edit-
ing. After editing multi-granularity knowledge (i.e., entity,
relation, action) in the multimodal large language model, it
can solve the problem correctly.

With the continuous development of
multimodal large language models
(MLLMs) (Li et al. (2023); Alayrac
et al. (2022); Zhu et al. (2023); Dai
et al. (2023); Liu et al. (2023)), the
efficient modification of knowledge
within these models, called multi-
modal knowledge editing (MKE),
has garnered widespread attention
(Yao et al. (2023)). Studies on MKE
(Cheng et al. (2023); Li et al. (2024))
want to directly edit the knowledge
within MLLMs, allowing for the ad-
dition of new knowledge or the mod-
ification of old knowledge. For in-
stance, as illustrated in Figure 1,
when an MLLM is asked to de-
scribe the content of the image, it
might incorrectly interpret the out-
dated knowledge that “Obama is the
President of the United States”. This
outdated knowledge can be updated
by editing the model. Additionally, if the model does not recognize that the person shaking hands
with “Obama” is “Putin”, the new knowledge needs to be injected into the MLLM.

Several research efforts have been dedicated to knowledge editing in MLLMs. There is still a lack
of multi-granular knowledge in the existing datasets for Multimodal Knowledge Editing (MKE).
Specifically, MIKE (Li et al. (2024)) has developed its knowledge editing benchmark based on an
entity-level question-answering dataset, which encompasses a significant amount of entity-level
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knowledge. However, in real-world scenarios, relying solely on entity-level knowledge proves to
be insufficient. As depicted in Figure 1, answering the question correctly, three different types of
knowledge (i.e., entity, relation, action) need to be edited. In addition, the effectiveness of various
knowledge editing methods cannot be accurately reflected solely by the entity-level knowledge
dataset. On the other hand, MMedit (Cheng et al. (2023)) builds its knowledge editing dataset based
on open-domain knowledge visual question-answering (Marino et al. (2019)) and image caption
datasets (Chen et al. (2015)). They also fail to consider that the knowledge in the dataset should be
multi-granular.

To address this challenge, we construct the M2Edit (Multi-Granularity Multimodal knowledge
Editing), a dataset contains multi-granularity knowledge. This dataset consists of 3 types of knowl-
edge samples: 35,673 entity samples, 2,167 relation samples, and 4,557 action samples.

However, when applying existing methods (Meng et al. (2022); Mitchell et al. (2022a;b); Cao et al.
(2021)) to M2Edit, we encounter two problems: lack of ability to process multi-granularity knowledge
and lack of generalization on multimodal data. Lack of ability to process multi-granularity
knowledge: The existing work has not considered the modeling differences for knowledge of different
granularities. However, our experiments have revealed that knowledge of different granularities is
stored in distinct regions of MLLMs. Consequently, the existing methods for modeling knowledge are
imprecise and lack precision. Lack of generalization on multimodal data: While existing methods
have shown some effectiveness when directly transferring editing methods from the text modality
to existing datasets, they exhibit insufficient generalization on multimodal data. MLLMs are more
complex than LLMs (Yao et al. (2023)), as they typically comprise multiple components, including
an LLM, a visual encoder, and a multimodal interface. Failing to edit these modules simultaneously
is likely to result in poor performance on multimodal data, as confirmed by our experiments.

To overcome the above two challenges, we propose a novel knowledge editing method named
MLE (Multimodal Location-based Editing). To handle the problem of Lack of ability to process
multi-granularity knowledge, MLE sequentially identifies key knowledge layers within the three
components of MLLMs for different types of knowledge. To overcome the challenge of lack of
generalization on multimodal data. Subsequently, MLE collaboratively edits these key knowledge
layers in the three components by the least squares-based method to obtain better generality on
multimodal data. Our contributions can be summarized as follows:

• To the best of our knowledge, we are pioneers in advocating for a differentiated treatment of
various types of knowledge within MLLMs during knowledge editing. To substantiate this,
we have developed a Multi-Granularity Multimodal knowledge Editing dataset (M2Edit),
which incorporates three types of knowledge.

• We design a novel multimodal knowledge locate then edit method (MLE), which can locate
different knowledge in MLLMs to better process multi-granularity data and collaboratively
edit different components of MLLMs to achieve superior generalization.

• The experimental results demonstrate the effectiveness of our proposed method compared
to Baselines. Additionally, these results validate the differences in the storage of different
types of knowledge within the components of MLLMs. The code will be provided as an
attachment.

2 METHODOLOGY

2.1 TASK DEFINITION

For a multimodal large language model (MLLM) (Cui et al. (2024)), let Θ denote it. An MLLM (Θ)
often contains three components: a visual encoder for encoding images, a multimodal interface for
converting visual information into a large language model (LLM) space, and an LLM for processing
information from images and text simultaneously. Let Θ = {θve, θmi, θllm} be the components
parameters. For a multimodal knowledge editing dataset D = {(xi, vi, yi)|i ∈ [1, N ]}, where
xi, vi, yi represent the input text prompt, image and editing target respectively, and N represents the
number of samples in the dataset. For one sample (xi, vi, yi), the after editing MLLM denotes to Θ̂.
The goal of knowledge editing (Yao et al. (2023)) is to successfully output the editing target after
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editing (Reliability) and to have universality on similar samples (Generality) and should have no
effect on irrelevant samples (Locality).

Reliability. Editing reliability needs model to answer the knowledge problem to yi. Specifically, to
evaluate the reliability Orel(Θ̂) of the editing methods can be expressed by the following formula:

Orel(Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xi, vi) = yi)], (1)

where I(·) denotes the indicator function.

Generality. Editing generality needs model to answer similar questions about the same knowledge
to yi. Following MMEdit (Cheng et al. (2023)), the generality of the editing method is tested
from two perspectives: Visual generality (Ogen

v (Θ̂)): samples similar to the original image (i.e.,
(xi, vj , yi) s.t. vj ∼ vi), which can be calculated as

Ogen
v (Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xi, vj) = yi)]. (2)

Text generality (Ogen
t (Θ̂)): samples similar to the original prompt (i.e., (xj , vi, yi) s.t. xj ∼ xi),

which can be calculated as

Ogen
t (Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xj , vi) = yi)]. (3)

Locality. The locality of editing methods is evaluated by the MLLM can maintain its original output
on irrelevant samples, which can be calculated as follows:

Oloc(Θ̂) = E(xk,vk)∈D[I(Θ̂(xk, vk) = Θ(xk, vk))]

s.t. (xk, vk) ⊥ (xi, vi), (4)

where ⊥ denotes the two samples are unrelated.

2.2 M2EDIT DATASET

Knowledge Type Entity Relation Action
#Entities 877 1,403 2,850
#Relations - 6 -
#Actions - - 47
#Images 89,182 6,017 4,557
#Questions 179 30 235
#Samples 35,673 2,167 4,557

Table 1: Statistics of M2Edit dataset. M2Edit con-
tains instances involving three types of knowledge:
entity, relation, and action.

In order to overcome the challenge of existing
multimodal knowledge editing datasets’ lack of
multi-granularity knowledge, we construct the
M2Edit dataset, which consists of three types of
knowledge samples: entity, relation, and action.
The overall statistics of the M2Edit dataset are
shown in Table 1.

Entity data. M2Edit entity data is built by
filtering samples from the Oven dataset (Hu
et al. (2023)), where each image is linked to
a Wikipedia entity via a text query. We select
"(image, question, answer)" triples with single-
word entity names and manually choose ques-
tions with at least 5 synonymous queries and entities with over 5 related images for the generality
evaluation. As shown in Figure 2 top part, each question contains one entity knowledge, and we
replace the edit target with a similar word to ensure models do not contain this knowledge in advance.
As illustrated in Figure 2 top part, each question only contains one entity knowledge. For example,
the entity “capybara” has some related images and can be answered through some synonym questions.
Besides, to ensure that all models do not contain this knowledge in advance, we replace the edit target
with a similar word. For instance, “koala” and “capybara” belong to the same category “animal”, so
this example adopts “koala” as the editing target. And adopts different categories of entity problems
to evaluate the locality.

Relation data. M2Edit relation data is built from the FB15k-237-IMG dataset (Liu et al. (2019);
Bordes et al. (2013)), a subset of Freebase (Bollacker et al. (2008)), which automatically assigns
images to entities from the Internet. We filter triples with simple and unambiguous tail entities and
select triples with at least 3 images related to the head entity for visual generality evaluation. To
construct text generality sample sets, we use ChatGPT to generate and paraphrase relation questions.
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actor

What profession does the person in the 
image have?
What job does the individual in 
the picture do?

Realtion
What is the nationality of the person 
captured in the image?

(             ,      profession,      scientist)

In-scope Out-of-scope Edit target Original knowledge Synonymous questions

Entity 

What animal is presented in the image?
What is this animal?
What kind of animal is this? 
What is the category of this animal?

What is this place?

koala

(             ,      is a,       capybara)

Action

Can you describe what the [agent] is  doing 
at [place] to move?
What action is the [agent] undertaking 
at [place] that involves moving quickly?

running
agent woman

place outside

(             ,      action,                           ) 

sitting

How is the [agent] 
interacting with the 
[coagent]'s [bodypart] 
at [place]?

Figure 2: Editing examples for the three knowledge types of M2Edit. After editing the MLLMs, the
in-scope samples need to be generalizable, and the out-of-scope samples should not be unchanged.
For action samples, the semantic slots are filled with specific objects in the image.

As illustrated in Figure 2 middle part, each problem contains knowledge about one relation and two
entities. The head entity “Francis Bacon” can be represented by multiple images, and the relation
“Profession” can be represented by some synonym questions. Similarly, we also replace the tail entity
with another similar entity to ensure that the knowledge model is free. And adopts different relation
problems to evaluate the locality.

Action data. M2Edit relation data is based on the ImSitu (Yatskar et al. (2016)) dataset, where each
image often depicts a primary action, and provides annotations for the entities involved in the action.
We manually select action verbs with clear definitions and use ChatGPT to connect roles in the action
schema to form questions and paraphrase them for text generality evaluation. To construct the visual
generality set, we select multiple synonymous images from the dataset. As illustrated in Figure 2
bottom part, each problem contains knowledge about one action and a lot of entities involved. The
red words represent the semantic slots in the question, which for each image will be filled by the
specific entities involved. For example, the “[agent]” of the “running” that happened in the image is
“a woman”. Similarly, we also replace the action verb with another verb to be the edit target. And
adopts different verb problems to evaluate the locality.

We divide the data into training and testing sets at a 4:1 ratio to accommodate methods that require
training.

2.3 CASUAL TRACING FOR MULTIMODAL LARGE LANGUAGE MODEL

We apply Causal Mediation Analysis (Shanmugam (2001); Vig et al. (2020)) to track the causal
impact of the internal components of the MLLMs, which plays a role in producing answers with
multi-granularity knowledge. To trace the important state of the model always needs to take three
runs: a clean run that the model can answer the question correctly with normal input, a corrupted run
that corrupts the input to make the model get corrupted output, a corrupted-with-restoration run that
restores a certain state to judge the restoring of the output. After corrupted-with-restoration run, if the
probability of producing the correct answer increases (indirect effect), then the causal relationship
between this state and the final result is considered strong. Otherwise, it is considered weak. For
detailed procedures, please refer to Appendix A.

2.4 MULTIMODAL LOCATE THEN EDIT METHOD

To address the limitation of existing knowledge editing methods that cannot handle multi-granularity
knowledge and lack of generalization on multimodal data, we propose a method called MLE (Mul-
timodal Location-based Editing). MLE focuses on different components of the MLLMs, first
identifying the specific locations of different knowledge within the model (key knowledge layer), and
then performing the least squares-based method to edit them collaboratively. The overall architecture
of the model is shown in Figure 3.
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Visual
Encoder

Large
Language

Model

Multimodal
Interface

Multimodal Large Language Model

Locate Key Knowledge Layers

Knowledge
Center

koalaEdit Key Knowledge Layers

Edit Score ↑ Edit Score ↑ Edit Score ↑

Reliability Locality T-General

What is this animal?

koala

What is this place?

library

What kind of animal 
is this?

M-General

What is this animal?

koala koala

Image

Prompt

Edit

Eiditing Metrics

Key Knowledge Layers

Figure 3: The overall architecture of MLE. The MLE multimodal knowledge editing framework
locates the key knowledge layers storing knowledge in different components of the MLLMs through
similar knowledge, then edits the key knowledge layers through least squares fitting expected output
(z), and finally evaluates the editing results based on four editing evaluation indicators.

2.4.1 LOCATE KEY KNOWLEDGE LAYERS

For a knowledge editing sample si = (xi, vi, yi), the key layers for storing knowledge (Key Knowl-
edge Layer) in different components are located in turn. First, we will use the MLLM to represent
the samples in a specific training set, which can be M(xi, vi). Then, we will apply K-means
clustering to these representations to create k clustering center samples as Knowledge Centers
C = {cj = (xj , vj , yj)|j ∈ [1, k]}. In addition, we define Edit Score to be used to measure the
success of editing, which can be

Edit Score =
4

1
Orel +

1
Ogen

v
+ 1

Ogen
t

+ 1
Oloc

. (5)

After that, MIE edits each knowledge center sample in each layer from each component of MLLM.
The editing layer combination with the maximum Edit Score, that is, the Key Knowledge Layer, is
calculated as the most effective editing way for this cluster. The above process can be expressed as

Lkey(cj) = (rj , sj , tj) = max
r,s,t

(Edit score(Θ̂r,s,t(cj)))

r ∈ [1, Lllm], s ∈ [1, Lve], t ∈ [1, Lmi] (6)

where rj , sj , tj represents for a center knowledge sample cj only editing the rj-th layer of LLM,
sj-th layer of the visual encoder, and tj-th layer of the multimodal interface can get the highest Edit
Score. Afterward, for a sample in the test set ai, we calculate its cosine similarity with the samples in
the knowledge center set to find the closest sample. We then use the Key Knowledge Layer of that
center sample for knowledge editing, which can be formulated as

Lkey(ai) = Lkey(cj)

j = max
j

M(ai)M(ci)

|M(ai)||M(ci)|
, (7)

where M(·) denotes the representation from MLLM of the sample ai.

2.4.2 EDIT KEY KNOWLEDGE LAYER

After identifying the key layers, inspired by A, we can use the least squares-based method for model
knowledge editing. We sequentially edit the model using the order of the r-th layer of LLM, the s-th
layer of the visual encoder, and the t-th layer of the multimodal interface. Specifically, given some
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pairs (ai, bi) expressing the same knowledge, where ai = (xi, vi) is the input sample, bi is the edit
target, for the parameter matrix W , to update the parameter, it should solve the optimization problem:

min
W

N∑
i=1

||Wki − zi||22 + λ||W −W ′||22, (8)

where λ is a regularizer, and W ′ is original parameter, ki is the input vector of this layer corresponding
to ai and zi is the expected output vector corresponding to bi, N is the number of pairs. The
optimization problem has a closed-form solution, which can be expressed as the following:

W = (λW ′ +

N∑
i=1

zik
T
i )(λI +

N∑
i=1

kik
T
i )

−1, (9)

where I denotes the Identity Matrix.

Algorithm 1 Multimodal Locate Then Edit Algorithm
Require: Training Samples DT = {(xi, vi, yi)|i ∈ [1, N ]}, Testing Samples DI = {(xi, vi, yi)|i ∈ [1,M ]},

Center Number k
For Training Samples

1: Apply K-means clustering to DT to get Knowledge Center C = {cj = (xj , vj , yj)|j ∈ [1, k]}
2: Initialize the Key Knowledge Layer set Lkey

3: for cj in C do
4: for r in [1, Lllm] and s in [1, Lve] and t in [1, Lmi] do
5: Edit the r-th layer of LLM, s-th layer of vision encoder and t-th layer of multimodal interface of

MLLM to obtain Θ̂r,s,t(cj) # According to Equation 9
6: Calculate the editing score of this combination
7: end for
8: Calculate the combination of layers (rj , sj , tj) that can maximize the editing score for knowledge cj
9: Add (rj , sj , tj) to Lkey # According to Equation 6

10: end for
For Testing Samples

11: for ai in DI do
12: Calculate the most similar cj in C # According to Equation 7
13: Lkey(ai) = Lkey(cj) = (rj , sj , tj)

14: Edit MLLM to obtain Θ̂r,s,t(ai) # According to Equation 9
15: end for
Ensure: New Demo Bank D

The overall process of the proposed method MLE is shown in Algorithm 1.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

The editing MLLMs in the experiment are BLIP2-OPT 6.7B and MiniGPT4. BLIP2-OPT (Li et al.
(2023)) adopts a frozen visual transformer (VIT) in EVA-CLIP, frozen OPT as the LLM, and trains
a Query Transformer (Q-Former) to connect visual representation with language representation.
MiniGPT4 (Zhu et al. (2023)) is similar to BLIP2, utilizing the same frozen VIT in EVA-CLIP, the
same Q-Former and addition linear layer as the multimodal interface, and a frozen Vicuna (Touvron
et al. (2023)) as the LLM.

To simplify the calculation process and according to the key-value theory (Geva et al. (2021)), we
only consider modifying the parameter of the linear mapping matrix W for the output of each
transformer layer. The hyperparameter knowledge centers k is set to 50. We adopt BLIP2-FlanT5xxl
as the MLLM to calculate the similarity between samples. In addition, we randomly choose one
similar image sample for visual generality evaluation and one synonymous prompt for text generality
evaluation. ALL experiments are conducted using NVIDIA GeForce RTX 3090 GPUs.

6
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Method Entity Relation Action
R T-G V-G L R T-G V-G L R T-G V-G L

BLIP2-OPT
FT 70.2 30.5 20.3 46.9 54.3 23.8 12.4 55.9 80.6 42.4 12.4 60.4
KE 74.1 70.0 60.8 88.4 65.8 59.1 43.6 90.2 85.4 84.4 45.2 86.5
MEND 90.7 85.0 67.4 89.6 80.4 77.4 55.3 95.3 98.2 96.5 51.4 94.3
SERAC 89.2 88.7 60.1 90.6 75.6 70.3 42.3 96.2 99.0 95.3 55.2 95.6
ROME 80.4 73.4 58.8 91.2 69.2 63.7 32.5 94.2 93.7 90.2 52.5 93.2
MLE 93.2 91.7 76.2 90.8 88.4 82.0 64.1 94.3 99.2 98.4 60.4 96.1

MiniGPT4
FT 22.2 10.2 5.6 40.6 17.7 14.7 1.2 53.2 26.1 21.9 3.7 70.5
KE 76.7 69.5 60.6 87.6 66.8 56.4 42.3 88.1 86.0 82.9 44.3 84.9
MEND 92.2 83.5 68.8 90.6 80.2 79.1 55.7 98.2 98.3 98.7 52.1 96.4
SERAC 91.5 88.4 60.5 90.5 79.5 72.7 45.2 97.9 99.5 97.7 57.6 94.9
ROME 81.9 74.7 61.4 91.1 70.9 66.2 32.3 94.8 95.7 90.9 34.0 95.4
MLE 92.9 91.8 78.6 92.6 91.4 81.7 66.5 96.3 99.4 99.0 62.0 97.9

Table 2: Main Multimodal Knowledge Editing Result on the M2Edit dataset. R refers to reliability,
T-G refers to text generality, V-G refers to visual generality, and L refers to Locality. The upper
part shows the results on BLIP2-OPT (Li et al. (2023)) and the lower part on MiniGPT4 (Zhu et al.
(2023)).

3.2 BASELINES

We evaluate the knowledge editing methods implemented in the EasyEdit (Wang et al. (2023)) toolkit
as baselines.

FineTune (FT). It directly fine-tunes all parameters of the last layer of the model for editing samples.

Model Editor Networks with Gradient Decomposition (MEND) (Mitchell et al. (2022a)). It learns
to efficiently locate knowledge in the LLM, and the knowledge is edited by leveraging the low-rank
decomposition of gradients.

Semi-Parametric Editing with a Retrieval-Augmented Counterfactual (SERAC) (Mitchell et al.
(2022b)). It is a memory-based editing method, which consists of a scope classifier, a base model,
and a counterfactual model. For a new sample, the scope classifier is used to determine whether it is
in the memory cache, and then the sample in the cache that is most similar to the sample is input into
the counterfactual model to obtain the result.

Knowledge Editor (KE) (Cao et al. (2021)). It locates the knowledge via a hypernetwork (a
bidirectional-LSTM) and predicts parameter updates at inference time via constrained optimization.

Rank-One Model Editing (ROME) (Meng et al. (2022)). It locates the knowledge in LLM via
Causal Mediation Analysis, the sixth layer of MLP of LLM is updated by the least squares-based
method.

3.3 COMPARISONS EDITING METHODS

Table 2 shows that our method (MIE) outperforms other methods on all knowledge types of data of
M2Edit in most indicators, which demonstrates the effectiveness of our approach. In addition, from
the table, we notice:

• Our method achieves effective knowledge editing performance across a wide range of metrics
and different types of knowledge data. This indicates that our method can dynamically adapt
to different types of knowledge data and effectively edit all three components simultaneously.

• Our method shows the highest improvement in visual generality compared to the baseline
model (with improvements ranging from 4.4 to 10.8 in different settings). This demonstrates
that collaborative editing of different components of the MLLM can effectively enhance the
model’s ability to generalize images, addressing the issue of insufficient generalization in
the editing.
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Figure 4: Causal Tracing Results for the LLM MLP of MLLM. The horizontal axis represents
different layers, while the vertical axis represents the input characters. The intensity of the bars
indicates the probability of generating the correct answer (after causal intervention). Knowledge of
different granularities (i.e., entity, relation, action) is scattered in different layers in the LLM.

Figure 5: The distribution of the layers that need to be edited for the knowledge centers in the four
parts of MLLM components.

3.4 DISTRIBUTION OF KNOWLEDGE IN MLLMS

We conduct the Causal Mediation Analysis on different components of the BLIP2-OPT and found that
the storage of different knowledge varies across these components. Particularly in the LLM, different
knowledge is stored hierarchically. As shown in Figure 4, it illustrates the AIE (average indirect
effect) of the state in the MLP (Multilayer Perceptron) of LLM under different knowledge types.
Entity-related knowledge tends to be stored in the foremost part of the LLM, while relation-related
knowledge is stored in the foremost section, and event-related knowledge is stored in the rearmost
part of the large model.
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Figure 6: The result of MLE edits different components
of BLIP2-OPT 6.7B.

This conclusion is further supported by
the selection of key knowledge layers.
We divide the layers in different compo-
nents of MLLM (BLIP2-OPT 6.7B) into
four parts (Frontmost, Foremost, Rear-
most, and Last). As shown in Figure
5, it illustrates the selection of differ-
ent layers in various components of the
MLLM as key knowledge layers for dif-
ferent knowledge center samples. It can
be observed that in LLM, entity knowl-
edge samples tend to select layers in the
Frontmost part, relation knowledge sam-
ples tend to select layers in the Foremost
part, and action knowledge samples tend
to select layers in the Rearmost part. And
in the other two components, the editing
layers of different knowledge are also
different.
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Method Entity Relation Action
R T-G V-G L R T-G V-G L R T-G V-G L

BLIP2-OPT
FT 67.4 20.2 15.6 26.4 53.2 18.7 8.5 40.2 81.3 32.6 8.9 43.3
MEND 48.1 44.2 32.5 80.4 42.0 38.6 31.8 83.1 73.2 65.3 35.4 90.4
ROME 45.4 41.8 26.9 82.5 38.3 35.3 35.0 79.5 76.7 63.2 41.2 91.2
MLE 65.9 45.2 46.3 83.1 47.2 37.2 43.3 80.5 77.3 66.8 54.8 91.2

MiniGPT4
FT 24.2 5.8 5.2 26.3 15.0 4.7 1.4 38.2 28.9 22.3 5.4 54.3
MEND 53.7 50.2 34.4 82.4 46.7 38.4 24.7 88.2 63.4 55.3 43.2 92.3
ROME 55.2 48.6 32.4 84.0 48.2 39.1 27.2 89.2 72.3 59.4 48.9 93.3
MLE 61.3 51.9 43.8 82.6 51.3 39.5 34.3 90.1 74.7 61.5 53.7 93.5

Table 3: Batch Editing Results in M2Edit for Multimodal Knowledge Editing (The editing of 500
samples in a single batch).

3.5 THE IMPORTANCE FOR EDITING DIFFERENT COMPONENTS

As shown in Figure 6, it demonstrates the impact of editing a single component on the editing of
three types of knowledge. We found that editing the LLM yields better performance than other
components for all types of knowledge, which may indicate that the large model stores a significant
amount of knowledge. For entity-related knowledge, the decrease in performance is relatively
minimal when editing other components, while for action-related knowledge, the decrease is the most
significant. This suggests that a majority of action-related knowledge is stored in the LLM, while
entity knowledge is stored relatively scattered.

3.6 BATCH EDITING RESULTS

Following the batch editing approach(Meng et al. (2023)), we evaluated the performance of our
method after modifying 500 samples, as shown in Figure 3. The results demonstrate that our
method still achieves overall performance superior to the baseline, particularly in terms of visual
generality performance. However, since our approach is not specifically designed for batch editing,
its performance does experience some decline. Nonetheless, we consider this level of degradation to
be within an acceptable range.

4 RELATED WORK

4.1 MODEL KNOWLEDGE EDITING

Both the number of parameters and the amount of training data used in large language models (LLMs)
are increasing (Sevilla et al. (2022)). Knowledge is constantly evolving, and for new knowledge that
is not present in the model, some researchers are interested in studying knowledge editing (Meng
et al. (2022; 2023); Mitchell et al. (2022a)) techniques that involve precisely incorporating knowledge
entries into the model without affecting its original performance. ROME (Meng et al. (2022)) and
Memit (Meng et al. (2023)) try to locate the knowledge in LLM and then edit them. KE (Cao et al.
(2021)) and MEND (Mitchell et al. (2022a)) aim to use hypernetworks to identify the parameters that
need to be modified. During prediction, they employ specific methods to output the magnitude of
modifications required for those parameters. SERAC (Mitchell et al. (2022b)) achieves knowledge
modification by constructing an external memory cache and utilizing a scope classifier to modify the
knowledge. (Zheng et al. (2023)) proposes to leverage In-Context Learning (Brown et al. (2020))
to put new knowledge in the prompts to empower models to exploit them. The above methods are
for text-only LLMs. Utilizing multimodal data to perform knowledge editing on an MLLM is more
in line with real scenarios. The aforementioned methods are all applied to single-modal text-based
large models using single-modal data. However, performing knowledge editing on multimodal
large language models using multimodal data is more aligned with real-world scenarios. MMEdit
(Cheng et al. (2023)) and MIKE (Li et al. (2024)) propose two new multimodal knowledge editing
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datasets. However, they do not consider the multi-granularity nature of knowledge in the dataset.
Furthermore, their research merely transfers the aforementioned editing methods from LLMs to a
specific component in MLLMs. Although they achieved promising performance, we have discovered
that simultaneously editing three components can enhance the model’s generalization on multimodal
data.

4.2 MULTIMODAL LARGE LANGUAGE MODEL

Large language models (LLMs) (Brown et al. (2020); Ouyang et al. (2022); Touvron et al. (2023);
Zhang et al. (2022)) have demonstrated strong performance on knowledge-intensive tasks (Voorhees
& Tice (2000); Talmor et al. (2019); See et al. (2017)). As a result, there have been efforts to
train multimodal interfaces in large-scale image caption data for large language models (LLMs)
(Alayrac et al. (2022); Li et al. (2023); Zhu et al. (2023); Liu et al. (2023)), enabling them to
handle different modalities simultaneously. These models are also known as multimodal large
language models (MLLMs) and have shown promising results on knowledge-intensive tasks involving
multiple modalities, such as visual question answering (Marino et al. (2019); Antol et al. (2015)) and
multimodal dialogue (Wang et al. (2021); Zheng et al. (2022)). These models typically consist of
three components: a modality encoder for encoding data from modalities other than text (such as
visual encoders), a multimodal interface for transforming representations from other modalities into
the space of the LLM, and an LLM, which handles inputs from different modalities along with text
inputs to process multimodal tasks. Our method edits knowledge of all components in the MLLM
collaboratively and we also analyze the distribution of different knowledge across these components.

5 CONCLUSION

In this paper, we introduce a multimodal model editing dataset M2Edit for the problem that existing
datasets lack multi-granular knowledge, with three types of knowledge: entity, relation, and action.
In addition, To address the issue of insufficient generalization of existing methods on multimodal
data, we propose the Multimodal Location-based Method (MLE). Experiments demonstrated the
effectiveness of our method. Additionally, the experiments revealed inconsistencies in the storage
regions of different types of knowledge within the MLLM.
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A CASUAL MEDIATION ANALYSIS

Causal mediation analysis aims to identify the causal relationship between different intermediate
states in models and the final output of the answer. To trace the important state of the model
always needs to take three runs: a clean run that the model can answer the question correctly with
normal input, a corrupted run that corrupts the input to make the model get corrupted output, a
corrupted-with-restoration run that restores a certain state to judge the restoring of the output.

Clean Run: For a sample (xi, vi, yi) ∈ D, a clean run directly obtains the final answer (ŷi) through
the original MLLM (Θ), which is P(yi) = Θ(xi, vi). The state representation of each layer in LLM
can be Hllm = {h(i,l)

llm |i ∈ [1, Tllm], l ∈ [1, Lllm]}, where Tllm denotes the input token length, Lllm

denotes the layer numbers of LLM. The same formula holds for the state representation in the visual
encoder (Hve) and the multimodal interface (Hmi).

Corrupted Run: In the corrupted run, the corrupted output (o) is obtained by adding Gaussian noise
to the input image, which can be expressed as Pcor(yi) = Θ(xi, vi + ϵ). The state representation of
each layer in different components of MLLM change to be Ĥc, c ∈ {llm, ve,mi}.

Corrupted-with-restoration Run: In the corrupted-with-restoration run, it replaces each state
representation in each component of the corrupted run to clean run. In this way, we can get the new
prediction of yi as P

h
(i,l)
c

(yi) = Θ
clean h

(i,l)
c

(xi, vi + ϵ), c ∈ {llm, ve,mi}. The indirect effect (IE)

of each state representation h
(i,l)
c can be: IE = P

h
(i,l)
c

(yi)− Pcor(yi). Averaging over a sample of
statements can obtain the average indirect effect (AIE).

B DATASET ANNOTATION PROCESS

As illustrated in Figure 7, the annotation process for our method can be broadly divided into three
stages: Data Filtering, Diverse Generation, and Quality Control.

Data Filtering. Raw data is filtered based on specific rules, which are generally defined as follows:
For entity data, each entity must be associated with more than five images, and for relation data, the
head entity must have more than three associated images. The image resolution must exceed 64 × 64
pixels. For entity data, entity names must consist of a single word. Similarly, for relation data, tail
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OVEN

FB15K-IMG

ImSitu

Entity

Relation

Action

Q: What is this animal?
A: capybara

(Francis Bacon, profession, scientist)

running

agent woman

place outside

           Data Filtering             Diverse Generation

What animal is presented in the image?
What kind of animal is this? 
What is the category of this animal?

            Quality       
      Control

What profession does the person in the
image have?
What job does the individual in
the picture do?

Can you describe what the [agent] is
doing at [place] to move?
What action is the [agent] undertaking
at [place] that involves moving quickly?

High diversity

Low ambiguity

Simple answers

High-quality images

Figure 7: Data Annotation Process Flowchart. First, raw samples of Entities, Relations, and Actions
are filtered from Oven, FB15K-IMG, and ImSitu based on predefined rules. Next, the raw data
is transformed into QA-form datasets using ChatGPT, incorporating diverse variations. Finally,
high-quality data is manually curated to construct the M2Edit dataset.

entity names must also be single words. The number of samples within each subclass (defined by
entity types, relation terms, or action terms) must exceed 100 samples.

Diverse Generation. ChatGPT is employed to generate questions based on relation terms and action
frameworks, as illustrated in Figure 7. Additionally, it is instructed to produce synonymous variations
of these questions.

Quality Control. Finally, the generated questions and their associated samples are manually screened
based on the following criteria:

• High diversity: The generated questions must exhibit significant variability and avoid mere
truncations or expansions.

• Low ambiguity: Relation terms and action terms must be distinct, and the generated answers
should be as unique as possible.

• Simple answers: Answers should be concise (preferably a single word) and should avoid
abstract vocabulary.

• High-quality images: Images should be diverse, and the content should not contain unclear
text or other low-quality elements.

By following this process, we constructed our dataset M2Edit.
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